Polar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking.

نویسندگان

  • Jonatan Sanchez-Garcia
  • Daniela Arbelaez
  • Kurt Jensen
  • Diego E Rincon-Limas
  • Pedro Fernandez-Funez
چکیده

Prion diseases encompass a diverse group of neurodegenerative conditions characterized by the accumulation of misfolded prion protein (PrP) isoforms. Other conformational variants of PrP have also been proposed to contribute to neurotoxicity in prion diseases, including misfolded intermediates as well as cytosolic and transmembrane isoforms. To better understand PrP neurotoxicity, we analyzed the role of two highly conserved methionines in helix 3 on PrP biogenesis, folding and pathogenesis. Expression of the PrP-M205S and -M205,212S mutants in Drosophila led to hyperglycosylation, intracellular accumulation and widespread conformational changes due to failure of oxidative folding. Surprisingly, PrP-M205S and -M205,212S acquired a transmembrane topology (Ctm) previously linked to mutations in the signal peptide (SP) and the transmembrane domain (TMD). PrP-M205,212S also disrupted the accumulation of key neurodevelopmental proteins in lipid rafts, resulting in shortened axonal projections. These results uncover a new role for the hydrophobic domain in promoting oxidative folding and preventing the formation of neurotoxic Ctm PrP, mechanisms that may be relevant in the pathogenesis of both inherited and sporadic prion diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5.

Insulin recruits glucose transporter 4 (GLUT-4) vesicles from intracellular stores to the plasma membrane in muscle and adipose tissue by specific interactions between the vesicle membrane-soluble N-ethylmaleimide-sensitive factor attachment protein target receptor (SNARE) protein VAMP-2 and the target membrane SNARE protein syntaxin 4. Although GLUT-4 vesicle trafficking has been intensely stu...

متن کامل

Histidine(7.36(305)) in the conserved peptide receptor activation domain of the gonadotropin releasing hormone receptor couples peptide binding and receptor activation.

Transmembrane helix seven residues of G protein-coupled receptors (GPCRs) couple agonist binding to a conserved receptor activation mechanism. Amino-terminal residues of the GnRH peptide determine agonist activity. We investigated GnRH interactions with the His(7.36(305)) residue of the GnRH receptor, using functional and computational analysis of modified GnRH receptors and peptides. Non-polar...

متن کامل

Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking.

Yeast Nhx1 [Na+(K+)/H+ exchanger 1] is an intracellular Na+(K+)/H+ exchanger, localizing to the late endosome where it is important for ion homoeostasis and vesicle trafficking. Phylogenetic analysis of NHE (Na+/H+ exchanger) sequences has identified orthologous proteins, including HsNHE6 (human NHE6), HsNHE7 and HsNHE9 of unknown physiological role. These appear distinct from well-studied mamm...

متن کامل

Helix I of beta-arrestin is involved in postendocytic trafficking but is not required for membrane translocation, receptor binding, and internalization.

beta-Arrestins bind to phosphorylated, seven-transmembrane-spanning, G protein-coupled receptors (GPCRs), including the type 1 angiotensin II receptor (AT(1)R), to promote receptor desensitization and internalization. The AT(1) R is a class B GPCR that recruits both beta-arrestin1 and beta-arrestin2, forming stable complexes that cotraffic to deep-core endocytic vesicles. beta-Arrestins contain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 22 21  شماره 

صفحات  -

تاریخ انتشار 2013